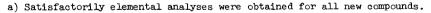

A NEW SYNTHESIS OF α -HYDROXY ALDEHYDES FROM KETONES AND TOSYLMETHYLISOCYANIDE¹

O.H. Oldenziel and A.M. van Leusen Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands.

(Received in UK 19 November 1973; accepted for publication 29 November 1973)

In the preceding letter^{1b} we reported the synthesis of 4-ethoxy-2-oxazolines (2) from TosMIC (1) and ketones with thallium (I) ethoxide. Due to the presence of a 4-ethoxy substituent, acid catalyzed hydrolysis of these oxazolines leads directly to the formation of α -hydroxy aldehydes (3). Since 4-ethoxyoxazolines (2) are easily obtained in good yields^{1b}, and because hydrolysis is achieved under mild conditions, we here have at hand a new and simple synthesis of α -hydroxy aldehydes in monomeric form.



For obvious reasons, much work was done in the past to develop methods for the synthesis of α -hydroxy aldehydes. Only a few approaches have been successful, with the restriction however, that mostly dimeric products were obtained.^{2,3} Recently, synthetic methods have been reported based on the hydrolysis of 1,1-dichloro-2-hydroxy compounds⁴, oxidative hydrolysis of α -hydroxy mercaptals^{5,3}, and hydrolysis of the mono-S-oxides of α -hydroxy mercaptals.⁶ These methods — applied to aryl α -hydroxy aldehydes only — are less general and more laborious than the present procedure.

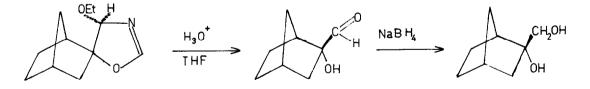
TABLE^a ОН О Н П R — С — С — Н

2

	R	R'	yield ^b	b.p./m.p. °C
<u>3a</u>	-(^{CH} 2)5-		38%	80-82°/12 mm
				DNPH, m.p. 217.5-218.5 ^{0 d}
<u>3b</u>	<u>n</u> -Pr	n-Pr	52%	73 [°] /12 mm
<u>30</u>	<u>t</u> -Bu	Me	70%	130°/760 mm
<u>3d</u>	Ph	Me	70%	108-110 [°] /0.3 mm
				(lit. ⁵ 116-120°/0.7 mm)
<u> 3e</u>	p-BrPh	Ме	71%	<u>m.p.</u> 60-61°
<u>3f</u>	A	Р	78%	97-100 ⁰ /12 mm
<u>38</u>	0		70% [°]	<u>m.p.</u> 176-176,5 ⁰

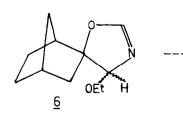
- b) Yields based on the amount of monomer obtained after diluting the reaction mixture with water, extraction with ether and distillation or crystallization.
- c) Mixture of dimer and monomer.
- d) Lit.² DNPH, m.p. 218-219°.

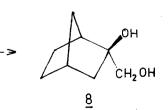
ОН


No. 2

The conversion of the 4-ethoxyoxazolines (2) to α -hydroxy aldehydes is accomplished simply by stirring a solution of 2 in a mixture of THF and dilute hydrochloric acid at room temperature overnight. The results are summarized in the Table.

With the exception of $\underline{3g}$, all α -hydroxy aldehydes were obtained in monomeric form. The tendency to dimerize was most pronounced for 1-hydroxycyclohexane-1-carboxaldehyde ($\underline{3a}$) and for 3, α -hydroxy-5, α -cholestane-3, β -carboxaldehyde ($\underline{3g}$). In all other compounds little dimer was present after storing samples for 3 days at -20°.


Hydrolysis of 2 was shown, by monitoring with GLC, to involve rapid formation of an intermediate ($\underline{4}$), which was converted more slowly to 3. By quenching the reaction leading to 3a at an early stage, the intermediate was isolated and identified as $\underline{4}$ [R-R' = -(CH₂)₅-] on the basis of PMR, IR and MS.


As was discussed in the preceding letter^{1b}, 2-norbornanone could give in principle two different pairs of epimeric 4-ethoxy-2-oxazolines (5 and 6), depending on the side of attack of TosMICanion. The oxazoline actually formed was an epimeric mixture of 5, since hydrolysis gave 2-<u>endo-</u> hydroxynorbornane-2-<u>exo</u>-carboxaldehyde (<u>3f</u>) only.⁷ The structure of <u>3f</u> was proven by reduction with NaBH₄ in absolute ethanol to give 2-<u>endo</u>-hydroxy-2-<u>exo</u>-hydroxymethylnorbornane (<u>7</u>), [70% yield, m.p. 69-70°, δ (CDCl₃) 3.34 (d, 2 H, J = 2 Hz, CH₂OH)], which was shown to be the epimer of the known 2-<u>exo</u>-hydroxy-2-<u>endo</u>-hydroxymethylnorbornane (<u>8</u>) by comparison with an authentic sample.⁸

<u>3</u>f

5

7

In a similar manner only $3, \alpha$ -hydroxy- $5, \alpha$ -cholestane- $3, \beta$ -carboxaldehyde (<u>3g</u>) was obtained from TosMIC and $5, \alpha$ -cholestanone-3. α -Hydroxy aldehyde <u>3g</u> was reduced likewise in 71% yield to $3, \alpha$ -hydroxy- $3, \beta$ -hydroxymethyl- $5, \alpha$ -cholestane (m.p. 185-186⁰).

Acknowledgement. This investigation was supported by the Netherlands Foundation for Chemical Research (SON).

Notes and References.

- 1. a. This letter is considered Chemistry of Sulfonylmethylisocyanides, Part 9;
- b. For Part 8, see 0.H. Oldenziel and A.M. van Leusen, this journal, preceding letter.
- 2. D.T.C. Gillespie, P.R. Jefferies, R. Killen Macbeth, M.J. Thompson, J. Chem. Soc. 1955, 665.
- 3. F. Weygand, H.J. Bestmann, H. Ziemann, E. Klieger, Chem. Ber. 91, 1043 (1958).
- 4. P. Blumberg, M.P. La Montaigne, J. Org. Chem. 37, 1248 (1972).
- 5. G.A. Russell, L.A. Ochrymowycz, J. Org. Chem. 34, 3618 (1972).
- 6. K. Ogura, G. Tsuchihashi, Tetrah. Letters 1972, 2681.
- 7. The spectral data (CMR, PMR) clearly showed that only one of the two possible epimeric 2-hydroxynorbornane-2-carboxaldehydes was formed. The same was found for 3-hydroxy-5, α -cholestane-3-carboxaldehyde.
- 8. H. Kwart, G.D. Null, J. Amer. Chem. Soc. <u>82</u>, 2348 (1960), m.p. 99,5-101^o, & (CDCl₃) 3.49 (s, 2 H, CH₂OH).
- 9. J.C. Jacquesy, R. Jacquesy, J. Levisalles, J.P. Pete, H. Rudler, Bull. Chim. Soc. France 1964, 2224.
- H.J. Reich, M. Jautelat, M.T. Messe, F.J. Weigert, J.D. Roberts, J. Amer. Chem. Soc. <u>91</u>, 7445 (1969).